
id-1 ICSI 2011: International conference on swarm intelligence

A Generic Set-Based Particle Swarm Optimization
Algorithm

Joost Langeveld, Andries P. Engelbrecht

Department of Computer Science, University of Pretoria,

Lynnwood Road, Hatfield, Pretoria, South Africa

jclangev@gmail.com, engel@cs.up.ac.za

Abstract
Several set-based particle swarm optimization algorithms have been proposed in the literature for solving

discrete and combinatorial optimization problems. However, a simple but generic algorithm defined in terms of
mathematical sets is still missing. In this paper a new algorithm called Set-Based PSO is proposed that fills this
gap. The Multidimensional Knapsack Problem is used as a test problem to investigate the performance of the
algorithm. Computational experiments are presented on a set of problems known from the literature both for
parameter tuning and to compare the algorithm’s performance to that of two alternative algorithms.

Key words
Discrete Optimization, Set-based Particle Swarm Optimization, Multidimensional Knapsack Problem

1 Introduction

The goal of this paper is to introduce a new generic set-based particle swarm optimization (PSO) algorithm called
Set-Based PSO and demonstrate its viability as a generic optimization algorithm for set-based problems. The
Multidimensional Knapsack Problem (MKP) was chosen as the test problem because it allows for straight-forward
fitness evaluation of particles without using any domain specific features. Thus the Set-Based PSO can be evalu-
ated, and compared to alternative algorithms, with the quality of the solutions determined by the proposed generic
algorithm and not aided by a domain specific operator. It is acknowledged that problem specific algorithms can
yield better solutions.

First the problem is stated, followed by a brief overview of the PSO algorithm and various discrete PSO
algorithms. Then the Set-Based PSO algorithm is described, which is finally tested in a number of computational
experiments and compared to two alternative algorithms.

2 Multidimensional Knapsack Problem

The MKP, also called the multidimensional zero-one knapsack or rucksack problem, is a well-know NP-complete
optimization problem [12]. When solving the MKP, the aim is to maximize the total value of all items to be put in
a knapsack, while satisfying multiple “weight” constraints. The problem is formulated as

maximize
n

∑
i=1

vixi, (1)

subject to xi ∈ {0,1}, ∀i ∈ {1, . . . ,n}, (2)

and
n

∑
i=1

wi, jxi ≤C j, ∀ j ∈ {1, . . . ,m}. (3)

There are n items in total each with value vi, while the binary variable xi indicates whether item i is present in
the knapsack or not. The problem has m constraints, where for each constraint j item i has a weight wi, j and for
each constraint the total weight ∑i wi, j xi may not exceed the capacity C j. Various methods and algorithms have
been used to solve the MKP: Integer Linear Programming [22], Polynomial Time Approximation Schemes [13],
Genetic Algorithms [3], Ant Colony Optimization [18], and PSO [26].

3 Particle Swarm Optimization

Particle swarms were originally investigated by Kennedy and Eberhart [14] as a tool to model the behavior and
movements of a flock of birds. This tool was quickly developed into a simple but elegant optimization algorithm
called Particle Swarm Optimization. In the canonical PSO algorithm the search space for the optimization problem

Cergy, France, June 14-15, 2011

ICSI 2011: International conference on swarm intelligence id-2

is a continuous, multidimensional space. Particles each have a position ~x in the search space and a velocity ~v
indicating its direction and step-size. The position is a point in the search space, the velocity is represented by
a vector in the same space. Each particle also keeps track of its own fitness (the quality of its solution to the
optimization problem) as well as the best position ~y it has visited in the past. Positions are initialized uniformly
random over the search space, and are updated by adding the velocity to the current position:

~xi(t +1) =~xi(t)+~vi(t +1) (4)

In their paper Kennedy and Eberhart [14] proposed two PSO algorithms, called global best (gbest) PSO and local
best (lbest) PSO. This description will focus solely on the global best PSO variant, for which the velocity vi, j of
particle i in dimension j is updated according to the following equation:

vi, j(t +1) = vi, j(t)+ c1r1, j(t) [yi, j(t)− xi, j(t)]+ c2r2, j(t) [ŷ j(t)− xi, j(t)], (5)

where j = 1 . . . ,n are the dimensions of the search space, r1, j(t) and r2, j(t) are random numbers drawn uniformly
from [0,1], while c1 and c2 are constants. The previous velocity vi, j(t) indicates the momentum of the particle
and is also referred to as the inertia component. The cognitive component, c1r1, j(t) [yi, j(t)− xi, j(t)], has the effect
of pulling the particle back towards ~yi(t); the point in the search space where it experienced the best fitness. The
social component, c2r2, j(t) [ŷ j(t)− xi, j(t)], attracts the particle towards ~̂y(t); the best solution so far.

To improve the performance of the algorithm and better control the balance between exploration and exploita-
tion, additions were made to the basic PSO algorithm: Eberhart et al. [10] proposed velocity clamping which
restricts the velocity to a predetermined maximum in each dimension. Later Shi and Eberhart [23] introduced an
inertia weight ω to scale the inertia component. The two additions combined result in the canonical velocity update
equation for global best PSO:

v′i, j(t +1) = ω vi, j(t)+ c1r1, j(t) [yi, j(t)− xi, j(t)]+ c2r2, j(t) [ŷ j(t)− xi, j(t)] (6)

vi, j(t +1) =

{
v′i, j(t) if |v′i, j(t)|<Vmax, j

Vmax, j if |v′i, j(t)| ≥Vmax, j
(7)

4 Discrete PSO approaches

PSO has proven itself to be an efficient algorithm for solving continuous optimization problems. Its early success
led to a search to see if the algorithm could be adapted so that it could be applied to discrete and combinatorial
optimization problems as well. Kennedy and Eberhart [15] introduced a discrete version of the PSO algorithm
referred to as the Binary PSO (BPSO). In BPSO a particle’s position is no longer a real-valued vector but a bit-
string ~x = {0,1}n. A sigmoidal transformation converts the velocity vi, j of particle i in dimension j to a value in
[0,1], which is used to determine the value of vi, j. The update equations for BPSO become:

vi, j(t +1) = ω vi, j(t)+ c1r1, j(t) [yi, j(t)− xi, j(t)]+ c2r2, j(t) [ŷi, j(t)− xi, j(t)] (8)

S(vi, j(t +1)) =
1

1+ e−vi, j(t+1) (9)

xi, j(t +1) =

{
1 if r3, j(t)< S(vi, j(t +1)),
0 otherwise,

(10)

where r3, j(t) is a random number drawn uniformly from [0,1]. Several variants and extensions of BPSO have been
developed, see for example [17, 27].

Discrete PSO methods using fuzzy logic have also been proposed by Pang et al. [20] and Du et al. [8]. A dif-
ferent approach was taken by Tasgetiren et al. [24] who used ranking order value (ROV) to convert the continuous
PSO to a discrete one. Pang et al. [21] proposed a similar method with a different conversion mechanism.

Clerc [4, 5] formulated a discrete-valued PSO algorithm by redefining the particles, velocities and operators
used in PSO. A general mathematical specification is given as well as a specific implementation that is then ap-
plied to the Traveling Salesman Problem (TSP). Other PSO algorithms with a similar approach of redefining the
operators have been proposed for the TSP [28], the MKP [2], and for topology design for local area networks [16].

Several set-based PSO algorithms have been proposed, but the opinion of this paper is that an efficient and
generically applicable discrete PSO algorithm defined in terms of mathematical sets is still missing:

• The algorithm proposed by Correa et al. [7] and the related one by Bock and Hettenhausen [1] have set-like
characteristics but both contain problem specific elements. Especially the concept of a so-called personal
likelihood that is used instead of particle velocity is not universally applicable: each element in a particle’s
position must be assigned its own partial fitness, which is impossible for many problems such as the MKP.

• Veenhuis [25] proposed a generic, set-based definition of a PSO algorithm. The design of the velocity update
equation leads to velocities and positions always increasing in size, an effect called set bloating. To counter

Cergy, France, June 14-15, 2011

id-3 ICSI 2011: International conference on swarm intelligence

this, a relatively complex clustering mechanism is introduced in the reduction operator that requires a domain
specific element distance function. This means the algorithm is no longer truly generic, and in its current
form is not applicable to discrete problems like the MKP.

• Neethling and Engelbrecht [19] proposed the SetPSO algorithm for RNA structure prediction that is a set-
based algorithm coupled with the application. The algorithm does not provide a mechanism for set-elements
in a position X that are in either the personal best position Y or the neighborhood best position Ŷ to be
removed, hence limiting the algorithm’s exploratory capabilities. Also elements that are not part of the set
X ∪Y ∪Ŷ and that are chosen to be added to the position, are chosen randomly, while a more informed choice
improves performance.

5 Set-Based Particle Swarm Optimization

This section proposes a novel, generic Set-Based PSO algorithm. The description below assumes that the Set-
Based PSO is used in a maximization task. A similar definition for a minimization task is easily derived from this.
Let

• U = {en}n∈NU be the universe of discourse containing all elements en,
• P(U) be the power set of U , or the set of all subsets of U , with X ∈ P(U)⇔ X ⊆U .
• f be the fitness function f : P(U)→ R to be optimized,
• ∀ particles i ∈ I the position Xi be a set over U , or Xi ∈ P(U),
• S be a swarm of particles: S = {Xi}i∈I , with |S|= NI ,
• Vi be the velocity of particle i, which is defined as a mapping Vi : P(U)→ P(U) and refined below,
• Yi be the personal best position for particle i, i.e. Yi = Xi(τ) where τ = 1, . . . , t such that

f (Yi) = f (Xi(τ)) = max{ f (Xi(s)
∣∣s = 1, . . . , t} , and (11)

• Ŷi be the neighborhood best position for particle i, i.e. Ŷi = Yj for particle j in Xi’s neighborhood with
personal best position Yj that maximizes f (Yj) .

The velocity mapping Vi is more narrowly defined as a set of additions and deletions of elements. Such a mapping is
denoted using a set of pairs {vi, j}i, j = {(±,eni, j)}i, j. Here eni, j ∈U is an element and the preceding “+” or “−” sign
denotes respectively whether the element eni, j is added to or removed from the position set on which the mapping
Vi is applied. Alternatively, a velocity can be seen as an element in P({+,−}×U), the power set of the Cartesian
product of {+,−} and U . Note that this is a more narrow definition, as a mapping Vi : P(U)→ P(U) that can
not be described using only additions and deletions can be found. Take for example U = {0,1}, and mapping V
such that V (/0) = /0 (so V can not contain any additions), V (U) = U (so V can not contain any deletions). If then
also V ({0}) = {1} and V ({1}) = {0} (so a deletion and an addition are needed in V in each case) this results in a
valid mapping Vi : P(U)→ P(U) that can not be denoted as a set of additions and deletions.

The following example illustrates the use of the velocity mapping. Assume that a particle with position X and
velocity V are given by

X = {a,b}, (12)
V = {(+,c),(−,b),(−,d)}. (13)

Then applying the velocity V to X yields a new position X ′ = {a,c}. The pair (−,d) has no impact on set X as
there is no element d in X to remove. The velocity update equation for Set-Based PSO is defined as

Vi(t +1) = c1r1 ⊗
(
Yi(t)	Xi(t)

)
⊕ c2r2 ⊗

(
Ŷi(t)	Xi(t)

)
⊕
(
c3r3

1
|A| �

+ A
)

⊕
(
c4r4 �− (Xi(t)∩Yi(t)∩ Ŷi(t))

)
, (14)

where A :=U\
(
Xi(t)∪Yi(t)∪ Ŷi(t)

)
. The position update equation is defined as

Xi(t +1) = Xi(t)�Vi(t +1). (15)

In the remainder of this section definitions are given for the operators used in equations (14) and (15), followed
by a description and motivation of the design choices made in constructing the algorithm. A pseudo-code of the
Set-Based PSO algorithm applied to a maximization task is given at the end of the section.

5.1 Redefined operators
The operators (⊕,	,⊗,�,�) used in equations (14) and (15) have the following definitions:

⊕ This is a mapping ⊕ : P({+,−}×U)2 → P({+,−}×U) that takes two velocities and yields a velocity,

Cergy, France, June 14-15, 2011

ICSI 2011: International conference on swarm intelligence id-4

defined as the simple union of the two sets of operation pairs:

V1 ⊕V2 :=V1 ∪V2. (16)

	 This is a mapping, 	 : P(U)2 → P({+,−}×U), that takes two positions to yield a velocity. The mapping is
defined as

X1 	X2 :=
(
{+}× (X2\X1)

)
∪

(
{−}× (X1\X2)

)
, (17)

i.e. the union of the product of {+} and all elements in X2 not in X1 (all such elements are added) with the
product of {−} and all elements in X1 not in X2 (all such elements are removed). This operator yields the
velocity V required to get from X1 to X2:

V = X1 	X2 =⇒ V applied to X1 yields X2. (18)

⊗ This operator is defined such that α⊗V means picking a subset of bα×|V |c elements at random from a velocity
V to yield a new velocity. Here bxc for x ∈ R+ denotes the largest n ∈ N for which x ≥ n. In general, the
operator ⊗ is defined as a mapping

R+
0 ×P({+,−}×U)→ P({+,−}×U), (19)

but working with sets that do not allow multiple instances of the same element, it makes sense to restrict this
mapping to scalars of at most 1, leading to

[0,1]×P({+,−}×U)→ P({+,−}×U). (20)

Note that 0⊗V = /0 and 1⊗V =V .
� This operator is defined such that α �X means picking a subset of bα × |X |c elements from a position X ,

and converting these elements to a set of operation pairs (additions and deletions of the elements selected),
yielding a velocity. Following the argument for ⊗ above, this can be seen as a mapping

[0,1]×P(U)→ P({+,−}×U), (21)

where the product of a scalar and a position is mapped to a velocity.
Note that equation (14) contains two versions of this operator: �+ that yields a velocity consisting of only
additions and �− of only deletions. Both are described in more detail below.

� This operator takes a velocity and a position to yield a new position, and is a mapping

� : P(U)×P({+,−}×U)→ P(U). (22)

It is specified as the action of applying the velocity mapping V to a position X :

X �V :=V (X). (23)

Two different implementations for the operators �+ and �− are proposed. The operator �+ is used in selecting
elements to add to Xi, while �− is used in selecting elements to remove from Xi. Random selection is used in case
of operator �−, which can be written as

α �− X := {−}× (α ⊗X). (24)

Note that operator �− in equation (14) is applied to the set (Xi(t)∩Yi(t)∩ Ŷi(t)), i.e. elements that are present
in each of the three positions Xi,Yi, and Ŷi. Such elements are candidates for removal from Xi using a separate
mechanism under �−, as the process of moving closer to either Yi or Ŷi can not remove such elements from Xi.

Marginal fitness information for particle i is used by operator �+ to choose which elements from U to add
to Xi. The marginal fitness is defined as the fitness of a new particle with its position equal to its current position
plus a single element e, i.e. Xi ∪{e}. A k-tournament selection algorithm, outlined in Algorithm 1, incorporating
this marginal fitness is used to select elements from U to add to Xi. This special case of the operator is denoted by
�+,k

i to indicate that the operator depends on the particle i and parameter k. In algorithm 1 the set to select new
elements from is called A, which in equation (14) is defined as A := U\

(
Xi(t)∪Yi(t)∪ Ŷi(t)

)
, i.e. all elements in

U not present in either Xi(t), Yi(t), or Ŷi(t). The parameter R ∈ [0,∞) indicates how many elements are selected
from A: an element e is chosen bRc times from A, where each chosen element in turn is the best (it maximizes the
fitness of Xi ∪{e}) in a tournament of k elements that are randomly selected from A. A larger value of R leads to
more elements from outside of A being added to the position Xi(t), while a larger value of k means the algorithm
is more greedy in selecting which elements to add.

5.2 Velocity update equation
The velocity update equation (14) for Set-Based PSO is similar to the velocity update equation of the original
PSO in equation (5) as both contain a social and a cognitive component. The inertia term is dropped because in

Cergy, France, June 14-15, 2011

id-5 ICSI 2011: International conference on swarm intelligence

Algorithm 1: k-Tournament Selection R
|A| �

+,k
i A

Set Vtemp,i = /0;
for n = 1, . . . ,bRc do

for j = 1, . . . ,k do
Randomly select e j from A;
Set score j = f (Xi ∪{e j});

end
Select m ∈ {1, . . . ,k} such that scorem = max j{score j};
Set Vtemp,i =Vtemp,i ⊕ ({+}× em);

end
Return Vtemp,i;

Set-Based PSO the velocity V (t + 1) is rebuilt at each step while all operation pairs in V (t) have been applied to
the position update resulting in X(t). Applying any operation pairs from V (t) to X(t) has no impact on the position
and can hence be left out.

Two separate terms are added to the velocity update equation in Set-Based PSO compared to the canonical
PSO. For the first term note that if an element e is present in position Xi, but also in its cognitive and social best
particles Yi and Ŷi, then moving towards either of these two best positions can not remove the element e from Xi.
To counteract this phenomenon, a mechanism is introduced to add “new” elements to the particle that are not in
Yi ∪ Ŷi using the term c3r3

1
|A| �

+ A, where A :=U\
(
Xi(t)∪Yi(t)∪ Ŷi(t)

)
.

Similarly, moving towards the cognitive and social best particles Yi and Ŷi can not remove elements that are
not in Yi ∪ Ŷi. In order to allow exploration of subsets in U that do not contain these elements, the following term
is added to the velocity update equation: c4r4 �− (Xi(t)∩Yi(t)∩ Ŷi(t)) .

5.3 Initialization
Velocities are initialized as empty sets, and positions are initialized as random subsets over U . To be more precise,
for each particle i the position is initialized by drawing a random number r uniformly from [0,1]. Then the position
Xi is calculated as r⊗U . The complete Set-Based PSO algorithm is described in Algorithm 2.

Algorithm 2: Set-Based PSO for maximization task

Set N equal to the number of particles in the swarm;
for i = 1, . . . ,N do

Initialize Vi := /0;
Initialize Xi := random subset of U ;

end
while stopping condition is false do

for i = 1, . . . ,N do
if f (Xi)> f (Yi) then

Yi := Xi;
end
if
(

f (Yi)> f (Ŷ)
)

then
Ŷ := Yi;

end
end
for i = 1, . . . ,N do

Update Vi according to equation (14);
Update Xi according to equation (15);
Calculate fitness f (Xi) for particle i;

end
end
Return best position found Ŷ ;

6 Experimental Results

For the experiments performed in this section various MKP known from the literature were used to test the Set-
Based PSO algorithm, namely the 55 test problems described by Chu and Beasley [3]. For each of the 55 problems

Cergy, France, June 14-15, 2011

ICSI 2011: International conference on swarm intelligence id-6

the optimal solution is known. The problems range in complexity from 6 to 105 variables and 2 to 40 constraints.
All problems used are available on-line at the Operations Research library at http://people.brunel.ac.
uk/˜mastjjb/jeb/orlib/mknapinfo.html.

The MKP is a constrained maximization problem. For the fitness evaluation, if all constraints are satisfied, the
fitness is set equal to the sum of the values of the elements in the particle position. If one or more constraints are
not satisfied, the fitness is set to minus infinity.

6.1 Parameter Tuning
A subset of 33 out of the 55 test problems was used to tune the parameters of the Set-Based PSO algorithm. In total
6 parameters were tuned: the swarm size N, the weight parameters c1,c2,c3, and c4 and the tournament size k. The
first phase of parameter tuning was performed according to the method of Franken [11]. This entailed using Sobol
pseudo-random numbers to generate low-discrepancy sequences that cover the 6-dimensional parameter space.
The initial parameter ranges were set at the values in Table 1.

parameter N c1 c2 c3 c4 k
minimum 5 0.0 0.0 0.0 0.0 1
maximum 40 1.0 1.0 5.0 1.0 10

Table 1: Initial parameter ranges used in tuning the Set-Based PSO algorithm.

An initial set of 64 parameter combinations was generated. For each parameter combination the Set-Based
PSO algorithm was run 30 times for each of the 33 problems. A score was calculated by taking the average over
the 30 runs of the best fitness recorded in each case, and normalizing this average fitness score by dividing it by
the known optimum fitness value. Then, using the FluxViz tool developed by Franken [11], a visual exploration
was performed using polar coordinates plots. Based on this visual exploration, the ranges of each parameter were
adjusted to zoom in on promising regions of the parameter space.

This process was repeated with 4 additional sets of 64 parameter combinations using different Sobol pseudo-
random numbers until the algorithm was run for a total of 320 parameter combinations. Each run was terminated
once the known optimum was found, or if there had been no progress in the best fitness found for 2500 iterations,
or if a total of 5000 iterations had passed. The visual exploration and parameter range adjustment were performed
on the total cumulative set of parameter combinations available for each problem, resulting in 64 parameter com-
binations for the first exploration, and 128, 192, and 256 for later explorations.

Based on the 320 scores per problem, the best 8 parameter combinations were selected and the parameter
values averaged for each of the 33 problems separately. This constituted the estimate of a good parameter value
for that problem. In order to see if a single average value existed for each of the 6 parameters that worked for
all problems, Kruskal-Wallis statistical tests were performed. The null-hypotheses for these tests were that the
average parameter value found was the same for each problem. Note that for each of the six parameters a separate
null-hypothesis was tested. For parameter c1 this can be stated as

H0(c1) := {avgp1
(c1) = avgp2

(c1) = . . .= avgp33
(c1)}, (25)

where p1, . . . , p33 denote the 33 tuning problems and avgp indicates the average over the best 8 out of 320 parameter
values for problem p.

The Kruskal-Wallis test was performed on 33 groups of 8 observations, using a confidence level of α = 5%.
As the Kruskal-Wallis tests involved making 33−1 = 32 comparison of average parameter values, the confidence
level was adjusted using Bonferroni correction to α = 5%/32 = 0.16%. The p-values for the six tests are given in
Table 2.

parameter N c1 c2 c3 c4 k
average 25.8 0.199 0.759 2.383 0.363 4.693
p-value 55.21% 0.025% 4.12% 0.001% 0.008% 98.65%

Table 2: Average of best 8 parameter values over all 33 tuning problems and Kruskal Wallis test p-value. The
bold p-values are less than the Bonferroni corrected confidence level of 0.16% and indicate a significant difference
between the average parameter values over the set of problems.

The null-hypothesis was rejected for c1, c3, and c4, indicating that the mean parameter value in these cases
varied for the different tuning problems. For the parameters N, c2, and k no statistically significant evidence was
found that the average value was different for any of the tuning problems. Hence for the latter three parameters the
(rounded) average values from Table 2 were used for the further computational experiments.

Cergy, France, June 14-15, 2011

id-7 ICSI 2011: International conference on swarm intelligence

From observing the variance of the average parameter values for c1, c3, and c4 over the set of test problems,
the hypothesis came that the found parameter value was influenced by the number of variables in the MKP. Using
trial and error the group of 33 tuning problems was subdivided into four separate groups based on the number of
variables: 0 to 27, 28 to 30, 31 to 50, and 51 to 105. Further Kruskal-Wallis tests on these groups showed that
significant variation of the average parameter value only occurred for c3 in the 28 to 30 variable group. See Table
3 for details.

One problem (mknap2-43) showed a significantly different average value of c3 = 3.90 compared to c3 =
2.44 for the rest of the 28 to 30 variables group. Even for that specific variable choice of c3 = 3.90, however,
performance of the Set-Based PSO algorithm on the mknap2-43 problem is relatively poor: none of the runs were
able to find the known optimum and the algorithm got stuck in a local optimum. For further experiments the
average parameter values of the 28 to 30 variables group excluding mknap2-43 were used. Even the 28 to 30
variables group excluding mknap2-43, however, shows a small but statistically significant deviation in the value of
c3 with a p-value of 0.45% versus a Bonferroni corrected confidence level of 0.56%.

variables p-value Kruskal-Wallis test average parameter value
min max cases N c1 c2 c3 c4 k α∗ N c1 c2 c3 c4 k

0 105 33 55.21% 0.025% 4.12% 0.001% 0.008% 98.65% 0.16% 25.8 0.199 0.759 2.383 0.363 4.693
0 27 6 66.83% 35.97% 9.56% 8.12% 31.83% 97.40% 1.00% 25.6 0.231 0.766 2.475 0.473 4.479
28 30 11 39.53% 16.79% 1.36% 0.01% 1.03% 98.92% 0.50% 27.0 0.229 0.763 2.577 0.423 4.625
31 50 8 54.95% 33.26% 99.19% 3.15% 94.89% 18.25% 0.71% 25.7 0.200 0.737 2.429 0.336 4.516
51 105 8 68.01% 38.74% 19.12% 52.53% 56.18% 66.53% 0.71% 24.7 0.132 0.771 2.003 0.225 5.125
28 30† 10 32.75% 19.64% 1.69% 0.45% 0.95% 98.97% 0.56% 26.9 0.226 0.755 2.444 0.432 4.575
29 29† 1 NA NA NA NA NA NA NA 27.8 0.259 0.841 3.898 0.335 5.125

Table 3: Average of best 8 parameter values over four groups of the 33 tuning problems and Kruskal-Wallis test
p-value. The bold p-values are less than the Bonferroni corrected confidence level for that group and indicate a
significant difference between the average parameter values over the group of problems. The bold faced parameter
values were used in further computational experiments. In the bottom two rows, indicated by †, the results are
shown for the 28 to 30 variable group excluding problem mknap2-43, and for that single problem separately.

6.2 Experimental Results
The performance of the Set-Based PSO algorithm was compared to that of the Binary PSO (BPSO) algorithm
described in section 4 and the SetPSO algorithm of Neethling and Engelbrecht [19]. The parameters for BPSO
were chosen based on the work by Eberhart and Shi [9] and Clerc [6] and set to c1 = c2 = 2.0,ω = 0.721 and
Vmax = 6.0. The swarm size was set to 25, equal to that for Set-Based PSO.

For SetPSO parameter tuning similar to that for the Set-Based PSO was performed, while the swarm size was
fixed at 25. Kruskal-Wallis statistical tests with Bonferroni correction showed that for the random add probability
PR a significant difference in the average parameter value existed for at least some of the 33 tuning problems. The
set of tuning problems was again by trial and error divided into groups based on the number of variables. For the
two groups of 0 to 35 variables and 36 to 105 variables the intra-group averages for PR did not show any significant
differences, and these averages, shown in bold in Table 4, were used in the further computational experiments.

variables p-value Kruskal-Wallis test average parameter value
min max cases N PI PC PR α∗ N PI PC PR

0 105 33 NA 89.03% 41.69% 0.05% 0.15% 25 0.644 0.207 0.079
0 35 22 NA 73.45% 99.43% 28.29% 0.23% 25 0.613 0.163 0.102

36 105 11 NA 93.71% 96.67% 34.94% 0.45% 25 0.678 0.254 0.075

Table 4: Average of best 8 parameter values over 33 tuning problems and Kruskal-Wallis test p-value for SetPSO.

For all three algorithms 30 independent runs were performed for the 55 test problems and the same stopping
conditions were used: a run was terminated once the known optimum was found, or if there had been no progress
in the best fitness found for 2500 iterations, or if a total of 5000 iterations had passed.

The results of the comparison of the three algorithms on all the 55 test MKP are given in Table 5. The average
errors of the three algorithms on each problem were compared in a pair-wise fashion using the Wilcoxon sum rank
statistical test with a confidence level of 5%. If on a problem one algorithm statistically outperformed the other
two, the average fitness error for the outperforming algorithm is indicated in bold.

The Set-Based PSO algorithm was able to find the optimum solution in at least one of the 30 runs for 41 out

Cergy, France, June 14-15, 2011

ICSI 2011: International conference on swarm intelligence id-8

Problems Success Rate Average Fitness Error
File Nr. n / m SB-PSO BPSO SetPSO SB-PSO BPSO SetPSO

mknap1 1 6 / 10 100% 100% 93% 0.00% 0.00% 0.18%
mknap1 2 10 / 10 100% 100% 17% 0.00% 0.00% 4.48%
mknap1 3 15 / 10 100% 100% 7% 0.00% 0.00% 3.19%
mknap1 4 20 / 10 100% 100% 0% 0.00% 0.00% 11.75%
mknap2 44 20 / 10 27% 53% 0% 0.89% 0.63% 10.10%
mknap2 41 27 / 4 3% 33% 0% 0.97% 0.51% 5.17%
mknap2 3 28 / 2 0% 0% 0% 0.44% 0.46% 10.31%
mknap2 4 28 / 2 100% 100% 0% 0.00% 0.00% 14.16%
mknap2 5 28 / 2 90% 77% 0% 0.08% 0.17% 17.35%
mknap2 6 28 / 2 0% 0% 0% 3.21% 3.21% 13.02%
mknap2 7 28 / 2 97% 100% 0% 0.01% 0.00% 16.55%
mknap2 8 28 / 2 93% 80% 0% 0.02% 0.06% 12.96%
mknap2 47 28 / 4 7% 43% 0% 1.05% 0.31% 5.03%
mknap1 5 28 / 10 13% 60% 0% 0.17% 0.04% 10.77%
mknap2 43 29 / 2 0% 0% 0% 3.80% 3.76% 8.44%
mknap2 11 30 / 5 97% 90% 0% 0.05% 0.11% 20.22%
mknap2 12 30 / 5 80% 67% 0% 0.04% 0.10% 18.05%
mknap2 13 30 / 5 93% 83% 0% 0.10% 0.21% 18.37%
mknap2 14 30 / 5 100% 100% 0% 0.00% 0.00% 25.51%
mknap2 15 30 / 5 100% 93% 0% 0.00% 0.08% 22.40%
mknap2 42 34 / 4 3% 3% 0% 2.08% 0.96% 7.90%
mknap2 48 35 / 4 3% 7% 0% 2.31% 1.11% 7.40%
mknap2 46 37 / 30 7% 10% 0% 1.50% 2.56% 25.27%
mknap1 6 39 / 5 0% 0% 0% 0.80% 0.50% 4.03%
mknap2 16 40 / 5 30% 3% 0% 0.31% 1.06% 19.68%
mknap2 17 40 / 5 47% 7% 0% 0.30% 1.17% 23.49%
mknap2 18 40 / 5 37% 3% 0% 0.16% 0.93% 19.07%
mknap2 19 40 / 5 83% 7% 0% 0.13% 1.26% 25.80%
mknap2 45 40 / 30 47% 3% 0% 1.62% 8.04% 34.74%
mknap1 7 50 / 5 0% 0% 0% 1.29% 1.16% 8.69%
mknap2 20 50 / 5 27% 0% 0% 0.55% 4.13% 28.04%
mknap2 21 50 / 5 27% 0% 0% 0.50% 6.93% 27.51%
mknap2 22 50 / 5 40% 0% 0% 0.62% 4.96% 29.36%
mknap2 23 50 / 5 57% 0% 0% 0.35% 4.99% 28.29%
mknap2 24 60 / 5 20% 0% 0% 0.54% 8.59% 29.68%
mknap2 25 60 / 5 30% 0% 0% 0.56% 8.94% 30.22%
mknap2 26 60 / 5 23% 0% 0% 0.22% 6.29% 31.90%
mknap2 27 60 / 5 3% 0% 0% 0.54% 3.56% 22.88%
mknap2 1 60 / 30 27% 0% 0% 0.36% 7.54% 37.63%
mknap2 2 60 / 30 0% 0% 0% 0.54% 2.66% 24.68%
mknap2 28 70 / 5 0% 0% 0% 1.25% 5.87% 26.61%
mknap2 29 70 / 5 27% 0% 0% 0.71% 12.05% 33.93%
mknap2 30 70 / 5 0% 0% 0% 0.86% 8.30% 31.67%
mknap2 31 70 / 5 17% 0% 0% 0.63% 9.40% 29.31%
mknap2 32 80 / 5 7% 0% 0% 0.82% 13.97% 37.58%
mknap2 33 80 / 5 3% 0% 0% 1.26% 15.31% 37.93%
mknap2 34 80 / 5 0% 0% 0% 1.66% 7.24% 27.49%
mknap2 35 80 / 5 0% 0% 0% 1.23% 9.82% 30.39%
mknap2 36 90 / 5 3% 0% 0% 1.27% 17.15% 38.55%
mknap2 37 90 / 5 13% 0% 0% 0.82% 16.95% 38.48%
mknap2 38 90 / 5 3% 0% 0% 1.37% 18.56% 39.24%
mknap2 39 90 / 5 0% 0% 0% 1.38% 17.96% 39.18%
mknap2 40 90 / 5 0% 0% 0% 1.67% 9.63% 31.06%
mknap2 9 105 / 2 0% 0% 0% 9.87% 12.66% 11.82%
mknap2 10 105 / 2 0% 0% 0% 6.26% 22.01% 40.64%
Average 34.2% 25.9% 2.1% 1.04% 5.16% 21.97%

Table 5: Results for all 55 MKP for the Set-Based PSO (SB-PSO), the BPSO, and the SetPSO algorithm. The
success rate indicates the percentage of the 30 runs that found the known optimum, the average fitness error is the
deviation between the average best fitness found and the known optimum.

of 55 problems, while BPSO was able to do so in 25 cases and SetPSO in only 3 cases. For 8 problems BPSO
outperformed the other two algorithms by a statistically significant margin. For 31 out of 55 problems the Set-
Based PSO algorithm statistically outperformed the other two algorithms, which included all problems with 60
or more variables. SetPSO did not outperform the other two algorithms on any problem. For Set-Based PSO the
average fitness error measured over all 55 problems was only 1.04%, which is substantially better than the results
for BPSO and SetPSO of 5.16% and 21.97% respectively.

Cergy, France, June 14-15, 2011

id-9 ICSI 2011: International conference on swarm intelligence

7 Conclusion

In this paper a new generic set-based PSO algorithm called Set-Based PSO was introduced and tested computa-
tionally on the MKP. The following conclusions were drawn:

1. The parameters of Set-Based PSO can be tuned effectively using the method outlined by Franken [11], but
no single “best” parameter setting could be found that worked for all 33 test problems considered.

2. Set-Based PSO was able to find good quality (less than 2% deviation from the known optimum) solutions for
the tested MKP with up to 90 variables. Note that good quality solutions were found without using problem
specific heuristics and despite the fact that a fitness function was chosen that makes the fitness landscape
more rugged by assigning a fitness of minus infinity to any infeasible solution.

3. For smaller MKP (up to 30 variables) Set-Based PSO and BPSO performed well, but little difference was
found in the quality of solutions as the problems were not sufficiently difficult to yield a significant difference
in performance. SetPSO did significantly underperform for this set of problems.

4. For medium-sized MKP (60 - 105 variables), the Set-Based PSO algorithm performed particularly well
compared to BPSO and SetPSO, outperforming the other two algorithms by a statistically significant margin.

5. SetPSO performed poorly on all but the least complex MKP.
Further research is needed to investigate if the Set-Based PSO algorithm scales well and can be applied effec-
tively to more complex MKP. Also more study is required to determine if dynamically changing Set-Based PSO
algorithm’s parameter values while the algorithm is running can help yield better results.

Due to the generic formulation of the Set-Based PSO algorithm, it is applicable to any optimization problem
that can be stated as a set optimization problem. Further investigations are needed to see if optimization of such
problems using Set-Based PSO is feasible and competitive with existing methods.

Bibliography

[1] Bock, J. and Hettenhausen, J. (2010). Discrete particle swarm optimisation for ontology alignment. Informa-
tion Sciences, In Press, Corrected Proof.

[2] Chen, W.-N., Zhang, J., Chung, H., Zhong, W.-L., Wu, W.-G., and Shi, Y. (2010). A novel set-based particle
swarm optimization method for discrete optimization problems. Evolutionary Computation, IEEE Transactions
on, 14(2):278–300.

[3] Chu, P. and Beasley, J. (1998). A genetic algorithm for the multidimensional knapsack problem. Journal of
Heuristics, 4:63–86. 10.1023/A:1009642405419.

[4] Clerc, M. (2000). Discrete particle swarm optimization illustrated by the traveling salesman problem. Un-
published, available online only at http://clerc.maurice.free.fr/pso/pso_tsp/Discrete_
PSO_TSP.htm (accessed 2010/10/08).

[5] Clerc, M. (2004). Discrete particle swarm optimization illustrated by the traveling salesman problem. In
Onwubolu, G. C. and Babu, B., editors, New optimization techniques in engineering, pages 219–239.

[6] Clerc, M. (2006). Particle Swarm Optimization. ISTE.

[7] Correa, E., Freitas, A., and Johnson, C. (2006). A new discrete particle swarm optimization algorithm applied
to attribute selection in a bioinformatics data set. In Proceedings of the Genetic and Evolutionary Computation
Conference - GECCO-2006, pages 35–42. ACM Press.

[8] Du, J.-X., Huang, D.-S., Zhang, J., and Wang, X.-F. (2005). Shape matching using fuzzy discrete particle
swarm optimization. pages 405–408.

[9] Eberhart, R. C. and Shi, Y. (2001). Particle swarm optimization: developments, applications and resources. In
Congress on Evolutionary Computation, volume 1, pages 81–86.

[10] Eberhart, R. C., Simpson, P. K., and Dobbins, R. W. (1996). Computational intelligence PC tools. AP
Professional, Boston.

[11] Franken, N. (2009). Visual exploration of algorithm parameter space. In Evolutionary Computation, 2009.
CEC ’09. IEEE Congress on, pages 389–398.

[12] Gens, G. and Levner, E. (1980). Complexity of approximation algorithms for combinatorial problems: a
survey. SIGACT News, 12:52–65.

Cergy, France, June 14-15, 2011

ICSI 2011: International conference on swarm intelligence id-10

[13] Kellerer, H. (1999). A polynomial time approximation scheme for the multiple knapsack problem. In
Hochbaum, D., Jansen, K., Rolim, J., and Sinclair, A., editors, Randomization, Approximation, and Combi-
natorial Optimization. Algorithms and Techniques, volume 1671 of Lecture Notes in Computer Science, pages
51–62. Springer Berlin / Heidelberg. 10.1007/978-3-540-48413-4 6.

[14] Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimisation. In Proceedings of the International
Conference on Neural Networks, pages 1942–1948.

[15] Kennedy, J. and Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. In
Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, pages 4101–4109.

[16] Khan, S. and Engelbrecht, A. P. (2010). A fuzzy particle swarm optimization algorithm for computer com-
munication network topology design. Applied Intelligence, pages 1–17. 10.1007/s10489-010-0251-2.

[17] Khanesar, M. A., Teshnehlab, M., and Shoorehdeli, M. A. (2007). A novel binary particle swarm optimiza-
tion. In 2007 Mediterranean Conference on Control and Automation.

[18] Kong, M., Tian, P., and Kao, Y. (2008). A new ant colony optimization algorithm for the multidimensional
knapsack problem. Computers & Operations Research, 35(8):2672–2683. Queues in Practice.

[19] Neethling, C. M. and Engelbrecht, A. P. (2006). Determining RNA secondary structure using set-based
particle swarm optimization. In Yen, G. G., Lucas, S. M., Fogel, G., Kendall, G., Salomon, R., Zhang, B.-
T., Coello, C. A. C., and Runarsson, T. P., editors, Proceedings of the 2006 IEEE Congress on Evolutionary
Computation, pages 1670–1677. IEEE Press.

[20] Pang, W., Wang, K.-P., Zhou, C.-G., and Dong, L.-J. (2004a). Fuzzy discrete particle swarm optimization for
solving traveling salesman problem. pages 796–800.

[21] Pang, W., Wang, K.-P., Zhou, C.-G., Dong, L.-J., Liu, M., Zhang, H.-Y., and Wang, J.-Y. (2004b). Modified
particle swarm optimization based on space transformation for solving traveling salesman problem. volume 4,
pages 2342–2346 vol.4.

[22] Puchinger, J., Raidl, G. R., and Pferschy, U. (2010). The multidimensional knapsack problem: Structure and
algorithms. INFORMS J. on Computing, 22:250–265.

[23] Shi, Y. and Eberhart, R. C. (1998). A modified particle swarm optimizer. In Evolutionary Computation
Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Con-
ference on, pages 69–73.

[24] Tasgetiren, M. F., Sevkli, M., Liang, Y.-C., and Gencyilmaz, G. (2004). Particle swarm optimization algo-
rithm for single machine total weighted tardiness problem. volume 2, pages 1412–1419 Vol.2.

[25] Veenhuis, C. (2008). A set-based particle swarm optimization method. In Rudolph, G., Jansen, T., Lucas, S.,
Poloni, C., and Beume, N., editors, Parallel Problem Solving from Nature – PPSN X, volume 5199 of Lecture
Notes in Computer Science, pages 971–980. Springer Berlin / Heidelberg. 10.1007/978-3-540-87700-4 96.

[26] Wang, L., Wang, X., Fu, J., and Zhen, L. (2008). A novel probability binary particle swarm optimization
algorithm and its application. Journal of Software, 3(9).

[27] Yang, S., Wang, M., and Jiao, L. (2004). A quantum particle swarm optimization. volume 1, pages 320–324
Vol.1.

[28] Zhong, W.-L., Zhang, J., and Chen, W.-N. (2007). A novel discrete particle swarm optimization to solve
traveling salesman problem. pages 3283–3287.

Cergy, France, June 14-15, 2011

